

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

200 Ω Chopper Driver Progress

Greg Saewert
PIP-II Technical Meeting
29 March 2016

Acknowledgements: Jeff Simmons

Topics

- Review of driver requirements
- Current development status
- Some performance results
- Thermal issues at high switching rates

200 Ω Chopper Driver design

- PIP-II CW machine requirements expressed in terms of a driver built as a switch
 - Operating voltage: 500 V min.
 - Pulse width range: \sim 2.2 ns flat top width to >1 μ s
 - Max acceptable rise/fall time: 4.5 ns, 5 95%
 - Max rep rate: 81 MHz for short bursts (kick every other bunch)
 - Average switching rate: ~35 MHz
- Switch design approach (benefiting from LDRD program)
 - 650 V GaN FETs used (GaN Systems)
 - Each FET and its driver circuit a "stage"
 - Triggered individually
 - All stages are matched for turn-on and turn-off delay, and turn-on rise time (+/- ~0.2 ns)
 - Isolated AC/DC power supply system developed
 - Each stage requires well regulated voltages
 - Power available is ~3 Watts to each stage
 - Two FET driver circuits developed:
 - "Rev_B" achieved ~3 ns turn-on time
 - "Rev_C" achieved ~1.5 ns turn-on time
 - Isolated trigger generator system used transformers
 - No semiconductor solution can handle required transient immunity
 - Low enough fiber optic solutions are too big and bulky
 - 3-FET stage switches operate at 630 V
 - Anticipate 3 or 4 stages per switch

Isolated switch provides topology options

- The compensation network is required to decrease the turn-off time
 - Turn-off times reduced by 50%
- Low- and high-side switch may, or may not, be practical at high duty factors

Chopper Driver system (as a high-side switch)

GaN FET used

GS66502B

Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Features

- 650 V enhancement mode power switch
- Bottom-side cooled configuration
- R_{DS(on)} = 200 mΩ
- I_{DS(max)} = 7.5 A
- Ultra-low FOM Island Technology® die
- Low inductance GaNPx[™] package
- Easy gate drive requirements (0 V to 6 V)
- Transient tolerant gate drive (-20 V / +10 V)
- Very high switching frequency (> 100 MHz)
- Fast and controllable fall and rise times
- Reverse current capability
- Zero reverse recovery loss
- Small 5.0 x 6.6 mm² PCB footprint
- RoHS 6 compliant

Key specs:

$$BV_{DS} = 650 V$$

$$I_{DS(DC)} = 7.5 A$$

$$I_{DS(pulse)} = 15 A$$

$$C_{iss} = 65 pF$$

$$C_{oss} = 17 pF$$

$$C_{rss} = 0.5 pF$$

$$R_{DS(on)} = 200 \text{ m}\Omega$$

3-Stage switch, low-side switch

Max. operation: 630 V

Load: 185 Ω

turn-on time: 3.0 ns turn-off time: 4.0 ns

Flat top pulse width: 2.2 ns to infinity

Switch built using "Rev_B" driver version

3-Stage switch, high-side switch

- Beam bunches are superimposed on tolerance limit lines
- Switch built using "Rev_C" driver version

Switch built with "Rev_B" drivers

Switch built with "Rev_C" drivers

"Rev_C" driver board

Trigger transformers (2)

AC power transformer

GaN FET GS66502 (GaN Systems)

eGaN FETs (2) EPC2037 (EPC Corp.)

Estimating losses at high switching rates

- Made measurements to relate FET dissipation and T_j for various switching rates
 - Measure T_i directly with thermal imager
 - The FET case top surface temperature is T_i
- Verified my Mathcad spread sheet closely predicts FET losses for given switching conditions
 - Voltage and load
 - Number of FETs
 - Transition rates
 - Switching rate
 - Parasitic values
- Obtained Mathcad estimate for 35 MHz CW switching
- Consulted with Alex Chen to imagine a way to water cool a four-FET switch

Water cooling GaN FETs – ANSIS model (A. Chen, J. Leibowitz)

- 4 FETs soldered to metalized BeO substrate
 - .040" thick
 - 270 W/mK
- Water block mounted to BeO back side
- 28°C water
- 0.1 gpm flow

3/29/2016

Timing effects with elevated FET junction temperature, T_j

- High repetition rate switching reveals only turn-on and turn-off edge timing shifts as T_i increases
 - There are no other adverse effects
 - Observed effect harmonizes with known gate threshold voltage positive temperature coefficient
- There is a time constant related to the time shifts
 - Bursts were made of varying number of pulses at 9 MHz switching rate
 - 9 MHz resulted in 133 T_i at steady state
 - Measurements of the time shifts were made of the pulse at the end of the burst intervals
 - Measurements can be made to determine thermal time constant
- Conceivable solution: A compensation algorithm (filter) can be implemented in the waveform generator
 - A function of both operating voltage and existing switching rate

Timing shifts with Junction Temperature

- Time shift value is measured at 95% max. amplitude

Conclusions

- The current multi-GaN FET scheme accomplishes (so far)
 - 500 V to 600 V operation
 - Well under 2 ns turn-on time
 - 2.2 ns flat top for kicking individual bunches
 - 81 MHz bursts
 - Compensation network is required with either high- or low-side switch topology
- Improvements are currently being made to trigger timing
- We yet have options regarding switch topology
- 35 MHz average rep rates seem possible with water cooling
 - Certainly worth prototyping
- High average switching temperature effects on the GaN FET should be able to be compensated out

END

